热门内容

公众号"MAKE1"

获取行业最新资讯

请扫码添加

专业客服企业微信

Use Timer Method(1)

简介

Use Timer Method(1)

定时器操作的步骤:

 

1.定义一个timer_list结构体:static struct timer_list button_timer;

 

2.定时器超时调用的函数:button_timer.function = button_timer_function;

给定时器操作函数传的参数:button_timer.data=test;

根据该定义该timer_list的参数初始化定时器:init_timer(&button_timer);

激活定时器:add_timer(&button_timer);

注:setup_timer(&button_timer,button_timer_function,test); 这个可代替上面的2步。最简单的方法是调用 setup_timer,

该函数初始化计时器并设置用户提供的回调函数和上下文。

 

3. 在中断处理函数中,mod_timer(&button_timer, jiffies+HZ/100); //10ms

注:动态定时器不需要手动释放,mod_timer超时执行之后,就会自动释放。

 

1.添加头文件

#include <linux/timer.h>

2.定义一个timer_list结构体成员

struct timer_list t1;

3.初始化定时器

init_timer(&t1);

4.填充t1成员

t1.function=&timer_fn; //回调函数

t1.expires=jiffies+HZ; //定时值

t1.data=HZ; //回调函数参数

5.添加定时器回调函数

void timer_fn(unsigned long i) //注意函数格式:返回void,参数unsigned long

{

printk("1s over!n");

t1.expires=jiffies+i; //定时值

add_timer(&t1); //修改定时器值add_timer会调用mod_timer

}

6.添加定时器

add_timer(&t1);

7修改定时值

add_timer(&t1);

或者

mod_timer(&t1,jiffies+HZ);

一般放在回调函数里面重装定时器定时值

 

 

示例分析如下:

下面的文章是基于mini2440的gpio按键来讲解input子系统。

以mini2440为例,用该板的bsp文件,进行input子系统的讲解.所用的版本为android4.0.

先来看下板级支持文件都注册了那些资源。

下面是五个按键的资源:

#define KEY_POWER 116 /* SC System Power Down */

#define KEY_F1 59

#define KEY_F2 60

#define KEY_F3 61

#define KEY_F5 63

struct gpio_keys_button {

/* Configuration parameters */

unsigned int code; /* input event code (KEY_*, SW_*) *///上报事件的code

int gpio;//所用的gpio引脚

int active_low;//是否低电平有效

const char *desc; //该按键的描述符

unsigned int type; /* input event type (EV_KEY, EV_SW, EV_ABS) */

int wakeup; /* configure the button as a wake-up source */

int debounce_interval; /* debounce ticks interval in msecs */

bool can_disable;

int value; /* axis value for EV_ABS */

};

static struct gpio_keys_button mini2440_buttons[] = {

{

.gpio = S3C2410_GPG(0), /* K1 */

.code = KEY_F1,

.desc = "Button 1",

.active_low = 1,

},

{

.gpio = S3C2410_GPG(3), /* K2 */

.code = KEY_F2,

.desc = "Button 2",

.active_low = 1,

},

{

.gpio = S3C2410_GPG(5), /* K3 */

.code = KEY_F3,

.desc = "Button 3",

.active_low = 1,

},

{

.gpio = S3C2410_GPG(6), /* K4 */

.code = KEY_POWER,

.desc = "Power",

.active_low = 1,

},

{

.gpio = S3C2410_GPG(7), /* K5 */

.code = KEY_F5,

.desc = "Button 5",

.active_low = 1,

},

};

/*下面是平台数据的声明*/

struct gpio_keys_platform_data {

struct gpio_keys_button *buttons;

int nbuttons;

unsigned int poll_interval; /* polling interval in msecs -

for polling driver only */

unsigned int rep:1; /* enable input subsystem auto repeat */

int (*enable)(struct device *dev);

void (*disable)(struct device *dev);

const char *name; /* input device name */

};

static struct gpio_keys_platform_data mini2440_button_data = {

.buttons = mini2440_buttons,

.nbuttons = ARRAY_SIZE(mini2440_buttons),

};

/*下面是平台设备的声明*/

struct platform_device {

const char * name;

int id;

struct device dev;

u32 num_resources;

struct resource * resource;

const struct platform_device_id *id_entry;

/* MFD cell pointer */

struct mfd_cell *mfd_cell;

/* arch specific additions */

struct pdev_archdata archdata;

};

static struct platform_device mini2440_button_device = {

.name = "gpio-keys",

.id = -1,

.dev = {

.platform_data = &mini2440_button_data,

}

};

static struct platform_device *mini2440_devices[] __initdata = {

...................

&mini2440_button_device,

………

};

static void __init mini2440_init(void)

{

.............................

platform_add_devices(mini2440_devices, ARRAY_SIZE(mini2440_devices));

……………

}

MACHINE_START(MINI2440, "MINI2440")

/* Maintainer: Michel Pollet */

.boot_params = S3C2410_SDRAM_PA + 0x100,

.map_io = mini2440_map_io,

.init_machine = mini2440_init,

.init_irq = s3c24xx_init_irq,

.timer = &s3c24xx_timer,

MACHINE_END

上面是把该设备注册到平台总线上。

下面看下平台驱动的注册:

static struct platform_driver gpio_keys_device_driver = {

.probe = gpio_keys_probe,

.remove = __devexit_p(gpio_keys_remove),

.driver = {

.name = "gpio-keys",

.owner = THIS_MODULE,

}

};

static int __init gpio_keys_init(void)

{

return platform_driver_register(&gpio_keys_device_driver);

}

module_init(gpio_keys_init);

在注册平台驱动时,如果成功匹配平台设备后,会调用平台驱动的probe函数。

下面看下该驱动的probe函数。

static int __devinit gpio_keys_probe(struct platform_device *pdev)

{

/*取出再bsp文件注册的平台数据*/

struct gpio_keys_platform_data *pdata = pdev->dev.platform_data;

/*这里出现了一个新的结构体,该结构体定义如下*/

/*struct gpio_keys_drvdata {

struct input_dev *input;

struct mutex disable_lock;

unsigned int n_buttons;

int (*enable)(struct device *dev);

void (*disable)(struct device *dev);

struct gpio_button_data data[0];

};*/

struct gpio_keys_drvdata *ddata;

struct device *dev = &pdev->dev;

struct input_dev *input;

/*分配gpio_keys_drvdata结构体内存*/

ddata = kzalloc(sizeof(struct gpio_keys_drvdata) +

pdata->nbuttons * sizeof(struct gpio_button_data),

GFP_KERNEL);

/*分配一个input结构体,并初始化部分成员*/

input = input_allocate_device();

/*为ddata的各个成员变量赋值*/

ddata->input = input;

ddata->n_buttons = pdata->nbuttons;

mutex_init(&ddata->disable_lock);

/*把ddata设备pdev平台设备的driver data*/

platform_set_drvdata(pdev, ddata);

/*把ddata设备input设备的driver data*/

input_set_drvdata(input, ddata);

/*设置input设备的各个成员变量*/

input->phys = "gpio-keys/input0";

input->dev.parent = &pdev->dev;

input->open = gpio_keys_open;

input->close = gpio_keys_close;

input->id.bustype = BUS_HOST;

input->id.vendor = 0x0001;

input->id.product = 0x0001;

input->id.version = 0x0100;

/* 根据pdata的rep成员值,设备input子系统的功能*/

if (pdata->rep)

__set_bit(EV_REP, input->evbit);

/*取出pdata中得资源进行赋值*/

for (i = 0; i < pdata->nbuttons; i++) {

struct gpio_keys_button *button = &pdata->buttons[i];

struct gpio_button_data *bdata = &ddata->data[i];

/*为三目运算符,相当于button->type ?: button->type:EV_KEY;*/

unsigned int type = button->type ?: EV_KEY;

bdata->input = input;//

bdata->button = button;

error = gpio_keys_setup_key(pdev, bdata, button);

if (button->wakeup)//该键能否作为唤醒源?

wakeup = 1;

input_set_capability(input, type, button->code);

}

}

error = input_register_device(input);

/* get current state of buttons */

for (i = 0; i < pdata->nbuttons; i++)

gpio_keys_report_event(&ddata->data[i]);

input_sync(input);

device_init_wakeup(&pdev->dev, wakeup);

return 0;

}

下面逐步分解上面标成粉色的函数。

第一个分配一个input dev并进行初始化

struct input_dev *input_allocate_device(void)

{

struct input_dev *dev;

dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);

if (dev) {

dev->dev.type = &input_dev_type;

dev->dev.class = &input_class;

device_initialize(&dev->dev);

mutex_init(&dev->mutex);

spin_lock_init(&dev->event_lock);

INIT_LIST_HEAD(&dev->h_list);

INIT_LIST_HEAD(&dev->node);

}

return dev;

}

分析第二个:

static int __devinit gpio_keys_setup_key(struct platform_device *pdev,

struct gpio_button_data *bdata,

struct gpio_keys_button *button)

{

/*取出按键的描述符*/

const char *desc = button->desc ? button->desc : "gpio_keys";

struct device *dev = &pdev->dev;

/*设置该bdata的定时器函数*/

setup_timer(&bdata->timer, gpio_keys_timer, (unsigned long)bdata);

/*设置该bdata的work函数*/

INIT_WORK(&bdata->work, gpio_keys_work_func);

/*申请button的gpio*/

error = gpio_request(button->gpio, desc);

/*设置gpio的方向*/

error = gpio_direction_input(button->gpio);

 

// button->debounce_interval = 5; //可以通过改变debounce_interval 的值修改驱动时间

if (button->debounce_interval) { //设置gpio的去抖间隔

error = gpio_set_debounce(button->gpio,

button->debounce_interval * 1000);

/* use timer if gpiolib doesn't provide debounce */

if (error < 0)

bdata->timer_debounce = button->debounce_interval;

}

irq = gpio_to_irq(button->gpio); //该gpio引脚对应分配的中断

irqflags = IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING;

if (!button->can_disable)

irqflags |= IRQF_SHARED;

/*注册该irq的中断处理函数,并设置标记*/

error = request_any_context_irq(irq, gpio_keys_isr, irqflags, desc, bdata);

其中中断处理函数如下:

static irqreturn_t gpio_keys_isr(int irq, void *dev_id)

{

struct gpio_button_data *bdata = dev_id;

struct gpio_keys_button *button = bdata->button;

BUG_ON(irq != gpio_to_irq(button->gpio));

if (bdata->timer_debounce)//如果有去抖间隔则修改定时器

mod_timer(&bdata->timer,

jiffies + msecs_to_jiffies(bdata->timer_debounce));

else

schedule_work(&bdata->work);//如果没有,直接执行work

return IRQ_HANDLED;

}

}

如果定时器到期,则执行定时器处理函数:

static void gpio_keys_timer(unsigned long _data)

{

struct gpio_button_data *data = (struct gpio_button_data *)_data;

schedule_work(&data->work);//执行相应的work

}

中断处理的结果是执行相应的work。看下work函数

static void gpio_keys_work_func(struct work_struct *work)

{

struct gpio_button_data *bdata =

container_of(work, struct gpio_button_data, work);

gpio_keys_report_event(bdata);//用input子系统,向上层报事件

}

第三个函数,设置该input dev的能力记录本设备对那些事件感兴趣

void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)

{

switch (type) {

case EV_KEY:

__set_bit(code, dev->keybit);// 比如按键,应该对哪些键值的按键进行处理(对于其它按键不予理睬)

break;

__set_bit(type, dev->evbit);

}

第四个函数:向input核心注册input设备

int input_register_device(struct input_dev *dev)

{

static atomic_t input_no = ATOMIC_INIT(0);

struct input_handler *handler;

const char *path;

int error;

/* Every input device generates EV_SYN/SYN_REPORT events. */

__set_bit(EV_SYN, dev->evbit); //设置支持的能力

/* KEY_RESERVED is not supposed to be transmitted to userspace. */

__clear_bit(KEY_RESERVED, dev->keybit);//清除该支持的能力

/* Make sure that bitmasks not mentioned in dev->evbit are clean. */

input_cleanse_bitmasks(dev);//确保在dev->evbit中没有支持的能力被清除掉

if (!dev->hint_events_per_packet)

dev->hint_events_per_packet = input_estimate_events_per_packet(dev);

/*

* If delay and period are pre-set by the driver, then autorepeating

* is handled by the driver itself and we don't do it in input.c.

*/

init_timer(&dev->timer);

if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {

dev->timer.data = (long) dev;

dev->timer.function = input_repeat_key;

dev->rep[REP_DELAY] = 250;

dev->rep[REP_PERIOD] = 33;

}

/*设置input dev成员变量的处理函数*/

if (!dev->getkeycode)

dev->getkeycode = input_default_getkeycode;

if (!dev->setkeycode)

dev->setkeycode = input_default_setkeycode;

/*设置该dev name*/

dev_set_name(&dev->dev, "input%ld",

(unsigned long) atomic_inc_return(&input_no) - 1);

error = device_add(&dev->dev);//把该设备增加到设备驱动模型中

/*把该dev加入到input_dev_list 链表*/

list_add_tail(&dev->node, &input_dev_list);

/*遍历input_hander_list链表中得hander,以便匹配input dev*/

list_for_each_entry(handler, &input_handler_list, node)

input_attach_handler(dev, handler);

return 0;

}

下面看下匹配函数:

static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)

{

const struct input_device_id *id;

id = input_match_device(handler, dev);//返回匹配成功的id

error = handler->connect(handler, dev, id);//如果匹配成功,则调用hander的connect函数

return error;

}

下面主要看下match的过程:

static const struct input_device_id *input_match_device(struct input_handler *handler,

struct input_dev *dev)

{

const struct input_device_id *id;

for (id = handler->id_table; id->flags || id->driver_info; id++) {

if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)//如果是匹配bus,则比较id.bus

if (id->bustype != dev->id.bustype)

continue;

if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) //如果是匹配vender则比较id.vender

if (id->vendor != dev->id.vendor)

continue;

//如果是匹配product则比较id.product

if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)

if (id->product != dev->id.product)

continue;

//如果是匹配versiont则比较id.version

if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)

if (id->version != dev->id.version)

continue;

/*如果hander支持该能力,则dev也要支持,否则不匹配*/

MATCH_BIT(evbit, EV_MAX);

MATCH_BIT(keybit, KEY_MAX);

MATCH_BIT(relbit, REL_MAX);

MATCH_BIT(absbit, ABS_MAX);

MATCH_BIT(mscbit, MSC_MAX);

MATCH_BIT(ledbit, LED_MAX);

MATCH_BIT(sndbit, SND_MAX);

MATCH_BIT(ffbit, FF_MAX);

MATCH_BIT(swbit, SW_MAX);

下面看下这个宏:

#define MATCH_BIT(bit, max)

for (i = 0; i < BITS_TO_LONGS(max); i++)

if ((id->bit[i] & dev->bit[i]) != id->bit[i])

break;

if (i != BITS_TO_LONGS(max))

continue;

/*如果hander的match空,则返回该id,或者调用match继续匹配,匹配成员的话也返回id*/

if (!handler->match || handler->match(handler, dev))

return id;

}

return NULL;

}

上面input dev已经注册完了,下面看看hander的注册.

static const struct input_device_id evdev_ids[] = {

{ .driver_info = 1 }, /* Matches all devices 来则不拒,公交车*/

{ }, /* Terminating zero entry */

};

MODULE_DEVICE_TABLE(input, evdev_ids);

static struct input_handler evdev_handler = {

.event = evdev_event,

.connect = evdev_connect,

.disconnect = evdev_disconnect,

.fops = &evdev_fops,

.minor = EVDEV_MINOR_BASE,

.name = "evdev",

.id_table = evdev_ids,//匹配的列表

};

static int __init evdev_init(void)

{

return input_register_handler(&evdev_handler);

}

module_init(evdev_init);

下面看下hander的注册:

static struct input_handler *input_table[8];

int input_register_handler(struct input_handler *handler)

{

struct input_dev *dev;

int retval;

INIT_LIST_HEAD(&handler->h_list);

if (handler->fops != NULL) {

if (input_table[handler->minor >> 5]) {//判断input_table的相应项是否被占用

retval = -EBUSY;

goto out;

}

input_table[handler->minor >> 5] = handler; // 如果没有占用,则把hander填入

}

/*把要注册的hander加入input_handler_list链表中*/

list_add_tail(&handler->node, &input_handler_list);

/*遍历input_dev_list链表上得每一个dev,去匹配该hander*/

list_for_each_entry(dev, &input_dev_list, node)

input_attach_handler(dev, handler);//开始进行匹配

}

匹配成功后,返回匹配成功的id,然后调用该handler的connect函数。

static struct evdev *evdev_table[EVDEV_MINORS]; //evdev的容器

static int evdev_connect(struct input_handler *handler, struct input_dev *dev,

const struct input_device_id *id)

{

struct evdev *evdev;

int minor;

/*在容器中找个空闲的地方*/

for (minor = 0; minor < EVDEV_MINORS; minor++)

if (!evdev_table[minor])

break;

/*分配一个evdev变量*/

evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL);

/*初始化该evdev的成员变量*/

INIT_LIST_HEAD(&evdev->client_list);

spin_lock_init(&evdev->client_lock);

mutex_init(&evdev->mutex);

init_waitqueue_head(&evdev->wait);

dev_set_name(&evdev->dev, "event%d", minor);

evdev->exist = true;

evdev->minor = minor;

/*初始化该evdev的成员变量handle,handle相当于是红娘连接input dev和相应的hander*/

evdev->handle.dev = input_get_device(dev);//增加该dev的引用计数

evdev->handle.name = dev_name(&evdev->dev);//设置该evdev的name

evdev->handle.handler = handler;

evdev->handle.private = evdev;//设置hander的私有数据,这个在下面会用到

/*初始化该evdev的成员变量dev*/

evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);

evdev->dev.class = &input_class;

evdev->dev.parent = &dev->dev;

evdev->dev.release = evdev_free;

device_initialize(&evdev->dev);

/*注册上面初始化好的handle*/

error = input_register_handle(&evdev->handle);

/*安装evdev,其实就是放到全局的evdev_table 数组中*/

error = evdev_install_chrdev(evdev);

该函数如下:

static int evdev_install_chrdev(struct evdev *evdev)

{

evdev_table[evdev->minor] = evdev;

return 0;

}

/*把该evdev设备增加到设备驱动模型中*/

error = device_add(&evdev->dev);

return 0;

}

下面主要看input_register_handle干了啥活?

int input_register_handle(struct input_handle *handle)

{

struct input_handler *handler = handle->handler;

struct input_dev *dev = handle->dev;

list_add_tail_rcu(&handle->d_node, &dev->h_list);//加入到dev hist链表的末尾

list_add_tail_rcu(&handle->h_node, &handler->h_list);//加入到hander的hist尾部

return 0;

注册的过程也就是把该handle加入dev和hander的链表中

}

 

该搭的关系已经搞好啦,下面就是要用啦,用的时候看三者是怎么配合的。

下面看现在中断处理中,是如何用的?

上面有说过,在中断发生后,会调用work,在work中去处理上报键值:上报函数如下:

static void gpio_keys_report_event(struct gpio_button_data *bdata)

{

struct gpio_keys_button *button = bdata->button;//取出每一个键的结构体

struct input_dev *input = bdata->input; //把该键的input设备也取出来

unsigned int type = button->type ?: EV_KEY; //类型为key

int state = (gpio_get_value_cansleep(button->gpio) ? 1 : 0) ^ button->active_low;

input_event(input, type, button->code, !!state);

input_sync(input);

}

继续分析:

void input_event(struct input_dev *dev,unsigned int type, unsigned int code, int value)

{

if (is_event_supported(type, dev->evbit, EV_MAX)) {//判断该事件是否被支持

……….

input_handle_event(dev, type, code, value);

..................

}

}

下面继续跟踪:

static void input_handle_event(struct input_dev *dev,unsigned int type, unsigned int code, int value)

{

int disposition = INPUT_IGNORE_EVENT;

switch (type) {

case EV_KEY:

if (is_event_supported(code, dev->keybit, KEY_MAX) && /判断该code是否被支持

!!test_bit(code, dev->key) != value) {

if (value != 2) {

__change_bit(code, dev->key);

if (value)

input_start_autorepeat(dev, code);

else

input_stop_autorepeat(dev);

}

disposition = INPUT_PASS_TO_HANDLERS;

}

break;

}

if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)

dev->sync = false;

if (disposition & INPUT_PASS_TO_HANDLERS)

input_pass_event(dev, type, code, value);

}

继续跟踪该函数:

static void input_pass_event(struct input_dev *dev,

unsigned int type, unsigned int code, int value)

{

struct input_handler *handler;

struct input_handle *handle;

list_for_each_entry_rcu(handle, &dev->h_list, d_node) {

if (!handle->open)//如果该handle没有被打开,则找下一个handle

continue;

handler = handle->handler;

if (!handler->filter) {

handler->event(handle, type, code, value);//调用handler的event函数

}

}

}

跟踪该函数:

static void evdev_event(struct input_handle *handle,

unsigned int type, unsigned int code, int value)

{

struct evdev *evdev = handle->private;//这个在上面已经设置过

struct evdev_client *client;

struct input_event event;//要上报的事件结构体变量

struct timespec ts;

/*填充event,要上报的事件结构体*/

/*该事件发生的时间*/

ktime_get_ts(&ts);

event.time.tv_sec = ts.tv_sec;

event.time.tv_usec = ts.tv_nsec / NSEC_PER_USEC;

/*赋值传进来的参数*/

event.type = type;

event.code = code;

event.value = value;

/*遍历evdev的client链表*/

list_for_each_entry_rcu(client, &evdev->client_list, node)

evdev_pass_event(client, &event);

}

下面看传递函数:

static void evdev_pass_event(struct evdev_client *client,struct input_event *event)

{

client->buffer[client->head++] = *event;//把传递的事件赋值给client的buffer中

client->head &= client->bufsize - 1;//管理循环缓冲区

}

*******************************************************************************

下面看下提供给上层的接口

下面看下hander的evdev_fops函数操作结构体:

看下具体的实现:

static const struct file_operations evdev_fops = {

.owner = THIS_MODULE,

.read = evdev_read,

.write = evdev_write,

.poll = evdev_poll,

.open = evdev_open,

.release = evdev_release,

.unlocked_ioctl = evdev_ioctl,

.fasync = evdev_fasync,

.flush = evdev_flush,

.llseek = no_llseek,

};

下面具体看下open函数:

static int evdev_open(struct inode *inode, struct file *file)

{

struct evdev *evdev;

struct evdev_client *client;

int i = iminor(inode) - EVDEV_MINOR_BASE;

unsigned int bufsize;

evdev = evdev_table[i];//根据inode的值取出evdev的值

/*为client分配缓存*/

bufsize = evdev_compute_buffer_size(evdev->handle.dev);

/*为每一个打开实例,分配一个client结构体*/

client = kzalloc(sizeof(struct evdev_client) +

bufsize * sizeof(struct input_event),

GFP_KERNEL);

/*初始化client的各个成员变量*/

client->bufsize = bufsize;

spin_lock_init(&client->buffer_lock);

snprintf(client->name, sizeof(client->name), "%s-%d",

dev_name(&evdev->dev), task_tgid_vnr(current));

client->evdev = evdev;//和该client关联的evdev

evdev_attach_client(evdev, client); //把该client加入该evdev的client链表中

下面是该函数的实现:

static void evdev_attach_client(struct evdev *evdev,struct evdev_client *client)

{

//把该client加入该evdev的client链表中

list_add_tail_rcu(&client->node, &evdev->client_list);

}

error = evdev_open_device(evdev);

file->private_data = client;//把该client挂载到file的私有结构体下

nonseekable_open(inode, file);

return 0;

}

下面接着看evdev_open_device(evdev);函数

static int evdev_open_device(struct evdev *evdev)

{

int retval;

if (!evdev->exist)//在connenct的时候就被设置为true

retval = -ENODEV;

else if (!evdev->open++) {

retval = input_open_device(&evdev->handle);

if (retval)

evdev->open--;

}

return retval;

}

看下最后一个函数:

int input_open_device(struct input_handle *handle)

{

struct input_dev *dev = handle->dev;

int retval;

handle->open++;//打开的计数器加1

if (!dev->users++ && dev->open)

retval = dev->open(dev);//该函数为空

return retval;

}

下一个目标是分析read函数:

static ssize_t evdev_read(struct file *file, char __user *buffer,

size_t count, loff_t *ppos)

{

struct evdev_client *client = file->private_data;

struct evdev *evdev = client->evdev;

struct input_event event;

while (retval + input_event_size() <= count &&evdev_fetch_next_event(client, &event)) {

if (input_event_to_user(buffer + retval, &event))

return -EFAULT;

retval += input_event_size();

}

return retval;

}

看下里面的两个细节

static int evdev_fetch_next_event(struct evdev_client *client,struct input_event *event)

{

int have_event;

have_event = client->packet_head != client->tail;

if (have_event) {

*event = client->buffer[client->tail++];

client->tail &= client->bufsize - 1;

}

return have_event;

}

/**/

int input_event_to_user(char __user *buffer,const struct input_event *event)

{

if (copy_to_user(buffer, event, sizeof(struct input_event)))

return -EFAULT;

return 0;

}

***************************************************************************

下面再看看input class是咋回事?

static const struct file_operations input_fops = {

.owner = THIS_MODULE,

.open = input_open_file,

.llseek = noop_llseek,

};

struct class input_class = {

.name = "input",

.devnode = input_devnode,

};

static int __init input_init(void)

{

/*注册input class*/

err = class_register(&input_class);

/*注册input dev字符设备,其中#define INPUT_MAJOR 13*/

err = register_chrdev(INPUT_MAJOR, "input", &input_fops);

return 0;

}

subsys_initcall(input_init);

***************************************************************************

看input_fops 中的input_open_file

static int input_open_file(struct inode *inode, struct file *file)

{

struct input_handler *handler;

const struct file_operations *old_fops, *new_fops = NULL;

handler = input_table[iminor(inode) >> 5];//根据上层传入的inode结构体,找到对应的handler

if (handler)//如果handler不为空,则取出该handler的fops指针赋值给新的new_fops

new_fops = fops_get(handler->fops);

old_fops = file->f_op;//备份老的

file->f_op = new_fops;//赋值新的,以后的对该设备的操作都会映射到该操作结构体

err = new_fops->open(inode, file);//调用新的open函数

if (err) {如果出错,则回退

fops_put(file->f_op);

file->f_op = fops_get(old_fops);

}

}

0
 条评论
相关内容推荐